
 

 
Abstract— This paper addresses the integration of sensor 
networks, game engines and network protocol technologies.  An 
architecture is presented which will enable these technologies to 
be leveraged to create mixed reality systems that support a 
number of applications.   

An instantiation of this architecture has been created.  The 
design and implementation of the system gives a virtual 
representation of a smart building.  The system allows data from 
sensor networks within the building at known locations to be 
integrated into a 3D virtual world, facilitating easy monitoring 
and control of the environment. 

This project will provide a solid future test bed for exploring 
and experimenting with a gateway enabling sensor networks to 
feed information into game protocols or any other appropriate 
information rendering platform. 

This paper also discusses the challenges that exist in 
developing such a system.  
 

Index Terms—Sensor network, protocols, mixed reality, 
networking in computer games, computer games, modelling, 
virtual worlds. 
 

I. INTRODUCTION 
his paper addresses the integration of sensor networks, 
game engines and network protocol technologies.  An 

architecture is presented which will enable these technologies 
to be leveraged to create mixed reality systems that support a 
number of applications.  The architecture integrates three 
classes of communication protocols: Internet, sensor network 
and game engine protocols.  Each of these classes has a very 
different set of requirements.  The strict efficiency 
requirement demanded by sensor network protocols due to 
their operation in a highly power-constrained environment is 
not shared by game engine protocols.  Game engine protocols 
instead require frequent data updates and a variety of 
smoothing techniques to ensure that an enjoyable and fast 
flowing gaming environment can be presented to players. 

The possible ubiquitous nature of sensor networks has been 
discussed for some time.  As the price of each node drops and 
the processing power increases, cheap mass production is not 
far off.  However processing power has never been the 
limiting factor for sensor networks, the limiting factor remains 
the battery power required for continued operation.  Whilst 
there have been many advances in processing power the 

advances in battery technology have failed to keep up.  Due to 
the constrained amount of power available it is necessary to 
design sensor network protocols to ensure that they achieve 
the maximum efficiency possible for their specific application. 

The game industry is rapidly expanding and interest in 
using game technology for educational and training purposes 
is on the increase.  In a mixed reality project it is possible to 
expand game technology to allow for a more immersive and 
engaging experience based on real world inputs, thus allowing 
the development of educations tools and resources more 
closely aligned to the aims of a constructivist pedagogical 
approach. 

The aim of this project is to create a generic architecture for 
streaming sensor network data into a game protocol.  Once 
designed a real system will be built using the described 
methods and architecture in this paper. 
 An interesting application could be in a command and 
control centre.  A sensor network deployed on the ground 
could be feeding continuous analysed data to displays in the 
control room.  The sensors may report personnel movement, 
rapidly changing weather conditions or audio data.  This live 
data and virtual representation could help when making 
tactical decisions. 

II. ARCHITECTURE 
This section provides a high level overview of the way in 
which information flows through the mixed reality system 
discussed in this paper before outlining the characteristics and 
functionality of each of the components which make up the 
architecture of the system. 

Real Time Mixed Reality in Virtual Environments 
T. Sturgeon, A. Miller, K. Getchell and C. Allison 
School of Computer Science, The University of St Andrews 

North Haugh, St Andrews, FIFE KY16 9SX 
Email: {tommy, alanr, kg, colin}@dcs.st-andrews.ac.uk 

 

T 

3

1

2
4

Central 
Tracker

Mote 3

Mote 1
Mote 5

Data Sink Mote

Mote 2
Mote 4

Sensor network gateway

Sensor 
network

The map change 
is sent out to all 

registered clients

Clients 
(1..4)

Server

Generate command for 
clients to execute on their 

map state

Object

3D Map State

Fig. 1 – Developed Architectural – Component Level 



 

A. System Component Overview 
This section describes the architecture developed which is 
capable of supporting the translation of sensor network data 
into a gaming protocol, thus allowing the sensor network data 
to modify the virtual environment maintained by the game 
server.  As shown in figure 1, the system comprises of a 
sensor network, a gateway for passing data between the sensor 
network and the game environment and a game server which 
maintains a master version of the current game state and 
which is able to replicate the current game state to all clients 
in the virtual environment via a central tracker object. 
• Mote – The mote is a wireless sensor that senses its 

environment and sends information back to a data sink in 
the sensor network.  The mote is constrained by battery 
power and as such data cannot be sent with high 
regularity or with large redundancy.   

• Data Sink – A data sink in the sensor network is a central 
point where data from motes is collected.  The motes may 
send their data directly to the data sink, or the data may 
be routed via other motes in the sensor network before 
arriving at the data sink. 

• Sensor Network Gateway – The gateway provides a 
means of extracting data from the protocols used by the 
sensor network and inserting it into protocols understood 
by the game engine maintaining the representation of the 
virtual world.  The gateway needs to be capable of a fast 
and efficient translation process in order to ensure that the 
real world data enters the virtual world representation 
whilst it is still relevant and valid. 

• Central Tracker – The central tracker ensures that any 
allowable updates to the virtual world triggered by game 
clients are replicated amongst all game clients in the same 
virtual world.  The central tracker is also responsible for 
sending map updates and other control commands, e.g. 
increasing light intensity in a certain area, as dictated by 
the game engine server to all game clients.  The central 
tracker is capable of differentiating between clients 
joining different virtual worlds, new clients joining who 
need full map updates and current clients who are already 
actively engaged in a virtual world and who need a 
replica of another client’s update. 

• Game Server – The game server is the central component 
that regulates readings from the sensor network, assigns 
virtual world actions based on that data and maintains the 
state of the virtual world state. The game server also 
contains a listing of all clients, their locations within the 
virtual world and their individual states.  Below is a list 
outlining some of the operations that the game server 
performs: 

o Maintains and Checks for timeouts from clients 
and removes any client where the timeout has 
expired from the central tracker. 

o Gathers information from the sensor network 
and displays it within the virtual world in an 
appropriate fashion. 

o Authorises clients joining and updating virtual 
world state. 

o Maintains a security policy to ensure that all 
client interactions with the virtual world are 
applied as per the game rules. 

• Clients - The clients each run their own 3D engine that 
displays to the user the current state of the virtual world. 
Clients must register at the start of a session and updates 
to their representation of the virtual world are handled by 
the central tracker.  In order to ensure a smooth, fast 
flowing virtual environment the emphasis on client 
communication is efficiency and speed with lightweight 
UDP communication being used to provide rapid updates 
to the world state maintained by each client.  More 
reliable (and less efficient) TCP communication between 
the clients and the central tracker is used sparingly to 
ensure important control information is accurately 
replicated amongst participants. 

• Map – The map is a virtual representation of a real world 
location.  The map can be of anything so long as it is 
accurately represented, i.e. the real world position of the 
sensors must match the position in the virtual world.  
When generating the map one can use architectural 
schematics to maintain the correct dimensions.  The 
environment represented by the map can be anything 
from a beach to a hotel.  In this paper the School of 
Computer Science was chosen as the building to model 
from architectural plans.   

 

B. High Level Data Flow and Interaction 
As shown in figure 2, readings from the sensor network motes 
distributed throughout the real world are sent to the virtual 
world through the sensor network gateway.  The sensed data 
is then interpreted at the game server and, if applicable, a 
modification to the virtual world maintained by the server is 
applied.  The virtual world modification is then replicated 
amongst all registered clients by the central tracker.   
 A client will frequently send an update to the virtual world 

1 Client Registration

Sensor network gateway

Central 
Tracker

Users Location

Object

3D Map State

Send or receive any 
client actions that are 

not just movement

Maintain a map 
of last known 

position and time 
connected

Update map state 
to reflect the 

clients

Game Server

Fig. 2 – Developed Architecture - Overview 



 

state maintained by the server via the central tracker.  
Assuming that this update can be validated as possible by the 
server, the centralised tracker will then replicate this change in 
virtual world state to all known clients. 
 At present the system is capable of displaying the 
temperature and light intensity sensed in an area of the map.  
Since the School of Computer Science has motion sensors in 
each room which turn on the lights when motion is detected, 
modifications are being developed which will allow the 
virtual world representation to display rooms in which people 
(or at least) movement are present by interacting with the 
building control systems.  Another expansion which is 
currently being explored is to develop a thermal image of the 
building, thus allowing heat sources, such as radiators, people 
etc to be displayed in the virtual environment. 
 

C. Instantiation 
The above architecture has been used in the implementation of 
a mixed reality system.  The developed system integrates live 
data from a sensor network inside the department into a virtual 
environment.  The rest of this paper discusses the design 
issues, technologies and challenges that were encountered 
during the instantiation of the above architecture.  In 
particular, the 2D to 3D conversion necessary to create an 
accurate model of the real world is discussed along with the 
technologies used to render the 3D world, issue in network 
code design and sensor networks. 

III. DEVELOPING A VIRTUAL WORLD MAP 

A. Platform Choice 
There are many design considerations when modelling a 
building in a virtual world.  One option was to build the 
virtual world using an existing game engine as the basis for 
development.  Various engines were investigated, such as the 
Quake Engine from ID, the Unreal Runtime from Unreal and 
the Source Engine from Valve and eventually chose to focus 

on the Quake engine as it had been recently open sourced, 
thus allowing us the opportunity to modify the underlying 
engine itself if necessary.  The initial maps were built using a 
mixture of the GTKRadiant[1] and Q3Radiant tools.  
However it quickly became apparent that developing a 
realistic virtual representation of a real world environment 
was going to be problematic using this platform.  Without any 
point of reference it was difficult to scale the environment 
correctly and so a short experiment was undertaken in order to 
determine how users’ perceived the relative scale of items in 
the virtual environment.  The experimental phase provided 
inconclusive results, with users’ perceptions of size varying 
greatly.  As no consensus was met, it was decided to reassess 
the initial decision to base the environment on a standard 
game engine.  Instead a customised engine was developed.  
This allowed the virtual map to be based on accurately scaled 
architectural plans. 
 

B. Building a 3D Model from 2D Architectural Plans 
The architectural plans for the School of Computer Science 
building were provided in 2D Autodesk® AutoCAD® DWG 
format.  As can be seen in figure 3, the original architectural 
plans contained a great deal of information regarding the 
positioning of building elements.  Some of this information, 
for example the positioning of doors, windows, internal walls 
etc was required when developing the 3D model whilst other 
sections of the original drawing were not required, for 
example the positioning of drainage, cable conduits, furniture 
etc.  In order to simplify the conversion process this 
extraneous information was removed in Autodesk® 
AutoCAD®.  Once the 2D plans had been modified to contain 
only the information required to develop the 3D model this 
data was imported into Autodesk® 3DS Max® 8. 

The process of developing the 3D model was documented 
fully during the process {ref} and broadly follows the strategy 
adopted by [2].  To briefly summaries, the walls were 
converted to closed splines and extruded to give the 3D shape 
of the building.  After extruding the walls a UVW map was 
applied to enable texturing of the finished structure.  Once the 
underlying 3D model was completed it was exported to the  
Autodesk® 3DS Max® 8 3DS file format so that it could be 

Fig. 3 – Original 2D Architectural Plans of the Building to be Modeled 
Virtually 

Fig. 4 – Finalised 3D Model of Building based on Original 2D 
Architectural Plans 



 

imported into both the texturing package, Right Hemisphere 
Deep Exploration, and also into the 3D engine used by the 
clients and server whilst rendering the virtual world map. 

As shown in figure 4, the finished model accurately 
portrays the original 2D architectural plans in terms of both 
the scale of the elements which make up the building and also 
their positioning within the map area. 

IV. 3D ENGINE 
The 3D engine is required to display the virtual world to the 
client.  As discussed in section III, there are various 3D 
engines available which can be used to model a virtual 
environment.  Commercial products such as the free Unreal 
Runtime Engine or the purchasable Valve Source engine are 
limited in their ability to be modified due to the restrictions 
that their licensing imposes.  Open source engines such as the 
ID Quake engine provide a more adaptable environment 
owing to the ability to modify the operation of the engine at 
the source code level.  Both the commercial and open source 
engines discussed all share one thing in common; the need for 
the client to download and install the engine itself. 

Given the scale and perception problems experienced in the 
early stages of working with pre-existing game engines, it was 
decided that a customised engine should be developed.  A key 
consideration was to make it possible to quickly distribute the 
game engine to each client over the World Wide Web.  This 
would allow anytime-anywhere access to the system without 
requiring clients to use any bespoke software.  By using Java 
it was possible to make use of existing Java 3D engines able 
to render 3D models formatted using Autodesk® 3DS Max® 8 
3DS files whilst also allowing the entire engine to be 
compressed into an easily portable JAR file which can be 
distributed to each client using Java Network Launching 
Protocol (JNLP) technology. 
 The Java 3D engine used to render the virtual environment 
is jPCT[13].  jPCT supports software and hardware rendering 
with OpenGL support.  A clear advantage of using jPCT is the 
open source nature of the project, unlike most commercial 
game engines with jPCT it is possible to directly modify the 
source code.  This level of flexibility would not be possible if  
a commercial game engine had been used. 
 

V. NETWORK CODE DESIGN 
For networked games the client updates the server with its 
current state approximately 30 times a second.  The client is 
given the entire map state on initial connection then supplied 
with updates indicating a change to a certain area of a map.  
These updates to the map state are broadcast to all clients 
every x seconds.  The value of x varies depending on how fast 
the server is.  In network games such as Valve Counter-
Strike:Source various techniques are employed to compensate 
for users with a higher latency connection to the server [3] : 
• Delta Compression:  This feature involves not sending 

the state of the game in its entirety every update period 
but rather sending information on what has changed only. 

• Entity Interpolation:  When a client is receiving 
information about other players movements it does so at 

distinct intervals of around 30 times a second.  If the 
software was to draw the movements of a player as 30 
distinct movements the result is a stuttering effect.  This 
stuttering is avoided by delaying all packets by 100ms 
and filling in any missing or corrupted data to give a 
smooth animation.   

• Input Prediction:  This involves each client running the 
same calculation code as the server to give the user 
immediate feedback as to their position and status rather 
than waiting for server confirmation.   

• Lag Compensation:  Whilst a client might see another 
client at time x the other player may have already moved 
away, the server remembers previous positions of players 
for a given length of time.  When a client sends an event 
packet the server logs are checked for the system state at 
the time the client initially made the request. 

 
 The architecture must be capable of displaying one user’s 
actions to another and incorporating any real time server data.  
Each user needs to know every other user’s position, 
orientation and state. 
 A main design decision was the choice between having a 
central point that all data must flow through and creating a 
P2P system for exchanging data for the exchange of data 
between clients and server.  P2P offers no central point of 
failure however the centralised server does have some key 
advantages especially when considering future expansions 
possibilities.  The centralised server allows for clients with 
higher latency since the only update they have to send is to the 
server. 
 The advantage of the configuration illustrated in figure 5 is 
that the nodes that have the faster links on the network will do 
most of the data transfer.  Now node 4 only has to update one 
other node rather than having to notify all other members of 
the group directly.  The above configuration will reorganise 
itself in case of a node leaving the group. 
 The centralised server, as shown in figure 6, also offers key 
security controls, as having a certified central server can 
insure against an attacker feeding false sensor data to the 
clients.  Another advantage is in the prevention of cheating by 
any of the nodes.  The anti-cheating policy being that 
important computations and decisions are controlled by the 
server and the nodes notified of significant changes.    
 The current server implemented uses a central tracker to 
relay information from one client to all other clients registered 
as having the same session identifier.  However in a P2P 
group a set of central-like servers could be elected.  These 

4

1

5

32

6 7 8 9

Fig. 5 – Diagram Showing the Flow of Information in a P2P Network 
with Elected Leaders 1, 2 and 3. 



 

master nodes would then transmit the information to members 
of its group. 
 

VI. SENSOR NETWORK AND TRANSLATION GATEWAY 
Initially there will be around 10 sensor nodes situated in the 
building.  These nodes will be running TinyOS and have been 
programmed to report on their environment every 30 seconds.  
The data sensed by the node is returned to the data sink.  If a 
node is outside the range of the data sink then the P2P nature 
of the network will route the message to the data sink.  Once 
at the data sink node, the data is retrieved from the node by a 
serial port connection.  The data read from the serial port is 
then printed to a standard net socket.  The socket accepts 
connections and will simply return the data read from nodes in 
real time.  Since the data from a node is relevant to its 
physical location determining a nodes location is important.  
Initially each node can be named and its position in the 
building noted during installation however this method will 
not support nodes moving around.  

There are various methods for calculating a nodes location 
such as GPS enabled nodes however GPS does not work 
indoors.  A future expansion will be to have a few nodes with 
known locations.  Then the relative distance between a known 
node and unknown node can be calculated and the absolute 
position determined. 

 

VII. TESTING 
A high level packet modifier for UDP packets was written to 
test the system.  The packet modifier will corrupt data, reorder 
packets, delay packets or drop the packet.  A user interface 
was developed to allow the user complete control over how 
many packets to interfere with and for how long.  Initial tests 
for dropping around 20 packets (s-1) or dropping a large 
amount of packets randomly caused a jittery display of other 
users’ movements and highlighted the need for entity 
interpolation. 

 Simple error checking avoided any problems with data 
scrambling and a highest received packet counter removed 
any problems with reordering of packets. 

A disadvantage to the packet modifier written is that it 
operates at an application level rather than at the kernel level 
and as such will not perform optimally. 
 

VIII. RELATED WORK 
Using the virtual world to portray what the real world will 
look like, for example once a new building has been 
completed, has been used by many architects [2].  The 
approach used in [2] is particularly relevant because of the use 
of architectural plans to create the 3D environment.  However 
[2] uses the commercial game engine Unreal which therefore 
requires all end-users to have paid for and installed the Unreal 
engine.  The advantage of this project is the use of a Java open 
source 3D engine which provides portability to anyone with a 
Java Runtime Environment installed and requires no 
installation or payment for any game applications.   

The system created in [4] allowed for players online to be 
chased by runners on the streets of a city.  This project 
incorporates the real time position of a person using the GPS 
system and can relate this to online players over the Internet.  
A major problem with [4] was the accuracy of GPS in built up 
areas.  The accuracy of GPS degrades significantly around 
high compacted buildings and stops working completely if 
indoors. However the launch of the new European satellite 
navigation system [5] will provide greatly improved accuracy.  
Whilst [4] provides information on the runners locations in the 
city, no real time information is provided about the conditions 
in the city. One could imagine that by integrating a sensor 
network that detects size of flow of people in a city street then 
that information could dramatically change the game play.  
The augmentation of real information into a virtual world with 
efficiency and accuracy is what this paper is attempting to 
create.   

A similar project to [4] was ARQuake [6] in which a head 
mounted display (HMD) is used to show the wearer the 
current game state in the virtual world whilst they are walking 
around the real world.  This augmented reality approach 
provides a very powerful and immersive experience however 
the equipment needed to play such a game is expensive.  One 
advantage this project has it that all that is needed to interact 
with the system is a Java runtime environment.  However the 
obvious drawback being that such a display is not as 
immersive as a HMD.  Mixed reality systems are increasingly 
being researched [7-12] and producing innovative and 
technologically challenging systems. 

 

IX. FUTURE WORK 
The system is currently a work in progress. A full 
implementation of the architecture outlined in this paper is 
very close. Future expansion areas being considered are the 

Fig. 6 – Configuration of a Centralised Way of Transmitting Data to All 
Clients Involved. 



 

tracking of personnel in the building through either motion 
detecting or individual tracking motes.  Another desirable 
expansion is to allow the virtual world to cause an action in 
the real world; early examples include, but not limited to, the 
control of light switches, kettles, doors or coffee machines. 
 

X. CONCLUSION 
 Mixed reality projects involve the use of many different 
technologies in a new and challenging way.  Research into 
combining sensor networks and game technologies has been 
sparse at best.  This paper has outlined a suitable architecture 
for creating an environment where sensor networks and a 
virtual environment can exchange information.  The end 
system will provide a solid test bed for future research and 
development in various areas of sensor network and game 
protocols. 
 

REFERENCES 
[1] GTKRadiant, id Software, http://www.qeradiant.com/  
[2] Shiratuddin, M.F. and Thabet, W. (2002) Virtual Office Walkthrough 
Using a 3D Game Engine, in International Journal of Design Computing, 4, 
http://www.arch.usyd.edu.au/kcdc/journal/vol4/.  
[3] Valve Corporation (2004).  “Source Multiplayer Networking” (URL) 
http://www.valve-erc.com/srcsdk/general/multiplayer_networking.html 
[4] Flintham, Anastasi, Benford, Hemmings, Crabtree (2003). Where On-Line 
Meets On-The-Streets: Experiences With Mobile Mixed Reality Games. 
[4] Bjork, S., Falk, J., Hansson, R., Ljungstrand, P. (2001). “Pirates! Using the 
Physical World as a Game Board”. Interact 2001.  
[5] Galileo , European Satellite Navigation System, 
http://europa.eu.int/comm/dgs/energy_transport/galileo/index_en.htm 
[6] Thomas, B. and Piekarski, W., "ARQuake: The Outdoor Augmented 
Reality Gaming System", Communications of the ACM,2002 Vol 45. No 1, pp 
36-38 
 [7] Bannon, Benford, Bowers, Heath (2005).  Hybrid design creates 
innovative museum experiences.  Bjork, S., Falk, J., Hansson, R., Ljungstrand, 
P. (2001).  
[8] Benford, Magerkurth. (2005).  Bridging the physical and digital in 
pervasive gaming.  Bjork, S., Falk, J., Hansson, R., Ljungstrand, P. (2001). 
[9] Prince, Cheok, Farbiz.  3D Live: Real Time Captured Content for Mixed 
Reality. 
[10] Benford, S. et al. Bridging the Physical and Digital in Pervasive Gaming. 
Communications  of the ACM. Vol. 48, issue 3 (2005) 54–57. 
[11] Mitchell M. et al. Six in the city: Introducing Real Tournament—a 
mobile IPv6 based context-aware multiplayer game. In Proc. ACM 
NETGAMES ’03 (2nd workshop on network and system support for games) 
(2003) 91–100. 
[12] Fourth IEEE and ACM International Symposium on Mixed and 
Augmented Reality (2005) in Arlington, VA, USA (URL) 
http://campar.in.tum.de/ISMAR/WebHome 
[13] jCPT, http://www.jpct.net/  


