
Generating 3D Multiplayer Game Maps from 2D
Architectural Plans

Ewan Summers, Kristoffer Getchell, Alan Miller, Colin Allison
School of Computer Science, The University of St Andrews

North Haugh, St Andrews, FIFE KY16 9SX
Email: {es54, kg, alan, colin}@dcs.st-andrews.ac.uk

Abstract–This paper presents an approach for using 2D
architectural plans to automatically generate 3D environments
which can be used as the basis for archaeological excavation
scenarios, delivered through networked, multi-user learning
environments. The approach discussed in this paper has been
developed as part of the LAVA project, which aims to provide
support for explorative learning of archaeological principles.
By mixing 2D management interfaces, 3D first person
perspective multiplayer game engines and network
communication, LAVA allows teams of users to engage with a
simulated environment based on real-world data. Owing to
the importance of realism within the LAVA simulation
environment, methods and techniques must be developed to
enable real-world site data to be represented accurately within
the virtual environment. The tool discussed in this paper
represents the first attempt at generating 3D environments
using real-world data obtained during on-site excavation work.

I. INTRODUCTION
The LAVA Platform [1] is an educational system

designed to allow users to engage with a simulated
archaeological excavation using a variety of 2D and 3D
visualisation techniques. By combining the Quake 2 [2] 3D
game engine and an institutional learning management
system, MMS [3], the LAVA Environment enables students
to form teams to cooperatively manage and undertake an
excavation of an archaeological site using a familiar user
interface. LAVA does not act as a replacement for real-
world excavation work, but rather aims to enable students to
gain a working knowledge of the operation of an excavation
project by presenting a realistic simulation based on real-
world data. A key challenge in creating a successful virtual
excavation is to make it as engaging and realistic as a real
excavation; hence the need to develop mechanisms to allow
real-world site data to be represented in LAVA’s virtual
excavation environments.

There have been several attempts at accurately
representing real-world archaeological data in 3D models.
Much work has been carried out using VMRL and its
successor X3D [4, 5], as well as with more sophisticated
modelling tools such as 3D Studio Max, to develop
representations of excavation sites. In addition to the
modelling work undertaken, sequences of media using
Apple QuickTime [6, 7] and Adobe Flash technologies have
also been developed which allow photographs of excavation
sites to be digitally sewn together to form a 360 degree
viewable snapshot of a site. When several of these

snapshots, each taken from a different region of the site, are
combined, the overall effect allows a viewer to explore a
site by jumping between the points of interest and reviewing
the 360 degree photograph of the region. One drawback to
these methods is the level of interactivity granted to the
viewer. As the photographs and models generated are static
representations of a given scene, users are provided with a
read-only view; they are unable to interact with or alter the
simulated environment; they can only view it from a variety
of different angles. When considering the requirements of
an engaging and realistic excavation scenario it quickly
becomes clear that this approach is not well suited to the
LAVA platform: Within LAVA simulations students need
to be able to review their progress as their excavation work
progresses; it is therefore important that they are able to see
the alterations to the 3D virtual environment caused by their
actions. In order to address this problem, the use of the
game engines as the basis for the simulations has been
investigated [8, 9], with a reference implementation
developed [10] which builds upon previous work by
Jacobson et al [11] and Wang et al [9].

Whilst game engines are able to support the level of
interactivity required between users and the simulated
environment, they are less well suited at portraying realistic
scenarios, owing to the fact that most games are more
concerned with game-play and player progression [12] than
with realistic representation of environments. As such, the
tools able to develop 3D models for use within game
engines generally make use of proprietary formats, and have
only limited support for importing and exporting data from
standard, open modelling formats. This therefore makes it
difficult to quickly use existing site data to develop new
scenario models. In order to automate as much of the
conversion process as possible, a modelling framework has
been developed which helps scenario developers use real-
world archaeological data to construct models using the
proprietary game engine formats. Section II of this paper
provides an overview of the creation of a Quake 2 map,
outlining the tools and processes used. Section III identifies
the system design of the framework, outlining objectives
and overall system architecture, with section IV describing
the evolution of the prototype instantiation of the
framework. Section V concludes the paper by discussing
the benefits of the framework and highlighting areas of
possible future work.

II. MAP CREATION PROCESS & TOOLSET
The creation of a Quake 2 map takes three stages:

A. 3D Modelling
3D Models are generated to form a virtual

representation of the objects within the game map. These
models specify the shape, positioning and size of objects
within the game map. During this process, a number of
editors can be used, with GtkRadiant [13] and Quake Army
Knife (QuArK) [14] being the most popular.

Both GtkRadiant and QuArK are open source level-
editing programs. GtkRadiant is an official editor released
by ID Software and supports the development of third party
plug-ins. GtkRadiant’s file format support is limited to the
official .map design files and .reg region files with little
support for additional import and export filters. Given that
the proprietary file formats are not common between
different modellers, and the lack of import and export filters
within GtkRadiant, the software cannot be used to generate
Quake 2 maps from 3D data stored in more widely used 3D
modelling formats. In contrast, QuArK’s development has
been community lead and, like GtkRadiant, QuArK
supports the inclusion of third party plug-in files, located in
a specific subdirectory, which are able to extend and
enhance the functionality of the software. Unlike
GtkRadiant, QuArK allows saving across a wider range of
file formats, thereby supporting the development of more
portable models. However, of the formats supported, none
are compatible with the more traditional 3D modelling
formats used outwith the games industry.

Both GtkRadiant and QuArK recognise the proprietary
.map format used to store the source of Quake maps.
Unfortunately the full structure of the .map format has not
been fully documented by ID Software, with partial details
being provided by unofficial sources online [15]. The
format is ASCII based, describing “entities” in the 3D
model. Entities are objects in the model and are described
by a collection of brushes. A brush is a solid region on the
map constructed by starting with an infinite solid and then
removing everything on the planes that define the brush, for
example:

Fig. 1 shows the definition of a brush - defining a
rectangular region from point (128, 128, 64) to (256, 384,
128). The definition includes 6 planes inside brackets, with
each plane being defined by three major parts; 3 non-
colinear points, listed clockwise; (128 0 0) (128 1 0) (128 0
1), the associated texture name GROUND1_6, with the
remaining numbers being used to define texture attributes.
The texture attributes themselves are used for the texture
mapping process. The variables are as follows:

x_off – Texture x-offset (multiple of 16)
y_off – Texture y-offset (multiple of 16)
rot_angle – Value indicating texture rotation
x_scale – Scales x-dimension of texture
y_scale – Scales y-dimension of texture

B. Texture Mapping
Once a model has been created, texture mapping can be

used to apply images to the surface of the wire-frames
which make up the game map. These textures prescribe the
visual appearance of the objects within the game
environment, with textures being used to differentiate
between the different objects in the map.

Quake 2 uses a proprietary file format for storing
textures. The .wal format stores textures in an
uncompressed, 8-bit indexed standard containing 4 sizes of
the image with each version scaled down to half the size of
the previous image. This scaled replication is called
mipmapping, and is used to speed up software rendering of
textured surfaces by having several pre-scaled images
within a single file, as shown in fig. 2. There are several
software packages able to generate .wal files, with Wally
[16] being one of the most widely used.

{
 (128 0 0) (128 1 0) (128 0 1) GROUND1_6 0 0 0 1.0 1.0
 (256 0 0) (256 0 1) (256 1 0) GROUND1_6 0 0 0 1.0 1.0
 (0 128 0) (0 128 1) (1 128 0) GROUND1_6 0 0 0 1.0 1.0
 (0 384 0) (1 384 0) (0 384 1) GROUND1_6 0 0 0 1.0 1.0
 (0 0 64) (1 0 64) (0 1 64) GROUND1_6 0 0 0 1.0 1.0
 (0 0 128) (0 1 128) (1 0 128) GROUND1_6 0 0 0 1.0 1.0
}

Fig. 1: Brush Definition

Fig. 2: Mipmapping Example

Fig. 3: (a) a 2D map broken into BSP segments, (b) the corresponding BSP

Tree

C. Compilation
Once a game map has been modelled and textured, it

needs to be converted into a format readable by the Quake 2
engine. This process, known as compilation, is handled by
the 3D modelling software used in the first part of the map
creation process. During compilation, binary space
partitioning (BSP) [17, 18] of the map is performed. This
allows the map to be broken up into a series of viewable
regions, with each viewable region being placed within a
tree structure. This process allows the Quake 2 engine to
selectively render areas of the map based on their visibility
from the player’s viewpoint, with areas not within visible
range being culled from the rendering process.

As shown in fig. 3a, if a player is located in position A on
the map, they would be located at terminal node 2b in the
BSP tree shown in fig. 3b. As branch 1 is not visible from
the player’s current position, the game engine could cull this
from the rendering process in order to save memory and
reduce processing overheads. The process by which the
BSP trees are generated and culled has been the subject of
some discussion, with [19] providing a good overview of
the process and the improvements in rendering that it can
achieve.

III. SYSTEM DESIGN

Instead of re-implementing the functionality found in
many of the most popular Quake 2 map editors, the
approach adopted was to develop software to read in 2D
architectural plans and then couple this with existing Quake
2 map editing software, thus speeding up the process of map
generation whilst at the same time extending the
functionality offered by existing tools. As fig. 4 shows, the
system makes use of loosely coupled components, with each
performing a specific task and outputting the result to the
next component in the chain. This process is managed by a
graphical user interface (shown in fig. 5) which
automatically processes the user input and passes the
required data to each module within the system, providing
feedback on the process of the 2D to 3D conversion as
necessary.

A. ImageSizer Module

The main purpose of the ImageSizer module is to creating
images that can be batch converted to .wal files using the
Wally application. Due to the restrictions of the .wal format,
Wally requires that images are sized appropriately, with the
height and width being a multiple of 16. This process is
especially time consuming when performed manually on
many images, however the ImageSizer module is able to
quickly process a large number of images, storing them for
later use in the 3D modelling environment.

B. HeightsManager Module

The HeightsManager module handles the specification of
heights in a custom format .hgts file. The .hgts file is simply
a set of tuples including a ‘piped’ RGB value and a number
to represent the height. The piped RGB value is a string

with the values separated by the | character. For example
“255|0|0” would be a representation for saturated red.

The module can both read existing .hgts files and also
write new files. When writing an .htgs file, it takes data
passed from the GUI module and outputs it into an ASCII
file in the required format, with the relationship between
colours and wall heights being decided by the user on a
project by project basis. When reading an existing .hgts
file, the module passes data to the GUI module which can
then be used to automatically build up the heights of the
walls represented in the 2D plan.

C. ImageReader Module

The ImageReader module’s main function is to produce a
set of lines, where a line is described as a start and end
point, for the MapWriter module. It takes as input a
formatted image which represents a 2D plan of the site of
interest. The input image can be in a variety of formats
including, Bitmap, PNG, JPEG, GIF and TIFF, but must be
a line drawing of the site featuring all of the walls to be
included in the 3D map. The background of the input image
must be white, with the lines drawn at least 1 pixel thick in
any colour other than white. When the image is scanned by
the ImageReader module, the lines are recognised and their
colour used to determine the height of the wall by reference
to the HeightsManager module. Once the wall has been

Figure 4: Loosely coupled framework design

Figure 5: Toolkit Graphical User Interface

recognised and its height obtained from the
HeightsManager, it is converted into a series of points
which are passed to the MapWriter module to be converted
into the Quake 2 map format.

D. MapWriter Module

Based on the input passed from the ImageReader module,
the MapWriter module’s function is to produce a valid
Quake 2 .map file that can be read by existing Quake 2 level
editing software. As data is passed to the MapWriter
module, the walls are reconstructed in memory. Once the
map has been calculated in memory it is output to a .map
file ready for processing within existing modelling tools.

At the end of the conversion process, the QuArK
modelling package is used to bring together the converted
textures and newly generated map file before compiling
them into a Quake BSP file which can then be loaded as a
level in the Quake 2 game environment.

IV. PROTOTYPE EVOLUTION

During the development process, the software framework
went through several stages of redesign, led by the need to
ensure interoperability with existing modelling tools. The
original design of the system, as shown in fig. 6, was based
on the principle of extension. The basic premise was to
construct add-ons to an existing modelling tool. During
development, this approach was found to be too heavily tied
to a fixed set of modelling tools, and thus the ability to
make use of the benefits of the framework limited to those
who made use of the modelling tools for which the add-ons
were developed. In order to address this issue, a loosely
coupled system was designed, with the conversion
framework designed to work outwith existing modellers.
Fig. 7 shows the revised design, with the existing 3D
modelling software shown as an interchangeable component
within the system.

Whilst fig. 6 outlines a system able to generate 3D maps
based on 2D architectural, it does not construct a map with
any texturing information. Following the loosely coupled
design, the framework was extended to enable the automatic
creation of Quake 2 .wal texture files using a series of user
supplied photographs (fig. 7). In keeping with the desire to
make use of existing software packages, the framework
generates these .wal files by calling an external program.
As shown in fig. 8, the output of the external program can
then be read directly by the 3D modeller of choice. The
drawback of this approach is that user input is required in
order for the textures to be applied to the map, however as
much of the preparation work is handled by the framework,
the amount of time needed to complete the texturing of the
map is greatly reduced.

In order to tie all of the components in the framework
together, a graphical user interface is used (see fig. 5). As
the final framework design in fig. 4 shows, the graphical
user interface handles the integration of each component
within the framework, allowing data to flow through the
system and into the external tools. In this case fig. 4 shows

Wally being used to manage the .wal texture files and
QuArK being used to combine the map and texture files into
the compiled Quake 2 BSP file. As has been discussed
previously, the choice of external programs is subject to
user preference, with the framework supporting the use of
alternatives as desired.

V. CONCLUSIONS AND FUTURE WORK
Initially a fully automated system that took a 2D input file

and produced a ready-compiled Quake 2 BSP map had been
envisioned. During the development of the framework, it
quickly became clear that this level of automation would be
difficult, if not impossible to achieve. The construction of a
3D map using 2D architectural plans requires a degree of
perception with spatial reasoning in both 2D and 3D.
Whilst a person can look at a 2D photograph and gain an
understanding of how the space would look in 3D, this is
not something a computer can easily achieve. People have
inbuilt metadata about dimensions and the world which is
gained through living and interacting with our
environments. Computers do not readily have this
information, and as such the conversion process cannot be
easily automated. When it became clear that full
automation was not feasible within the scope of this project,
Amdahl’s law of diminishing returns was followed; instead
of aiming for full automation, the parts of the system that
would have the most significant effect on reducing
developer time were automated instead. With the modelling
tools identified, the most time consuming aspect of map
creation was orientating walls in the 3D editor; a part of the

Fig. 6: Original Design

2D Map
(image

file)

Diagram Input
system

MapWriter
Module Quake 2

.map file

Texture Applier
EnvironmentTexture Applier

3D Modeller Quake 2
.bsp file

External Resource

Internal Resource

Fig. 7: Loose coupling between framework and 3D modelling software

using .map file as interchange format

Photographs
Resized

Photographs
ImageSizer

Module
Texturing
Software

2D Map
(image

file)

Diagram Input
system

MapWriter
Module Quake 2

.map file
3D Modeller Quake 2

.bsp file

.wal Textures

External Resource

Folder File

Internal Resource
Fig. 8: Coupling the Map creation and Texture Generation Processes

map creation process that the framework is able to
successfully automate.

At the start of the 2D – 3D conversion process, the
framework reads in data from a standard image format (GIF,
JPG, PNG etc). Whilst this approach ensures that the
framework does not require proprietary input files, it does
restrict the error checking that can be done on the input
somewhat. An interesting alternative would be to accept
input in the form of the Autodesk Design Web Format
(DWF); an open standard for the efficient distribution and
communication of rich design data. This would allow more
detailed design data to be processed by the framework
whilst maintaining the use of open and widely adopted
standards. It would also provide a direct conversion route
between industry standard modelling software and Quake 2
level editors; something currently not available. The
feasibility of a DWF import model is currently being
investigated.

It is clear that whilst the framework developed has many
advantages and possible applications, the approach itself is
still in its infancy. Indeed, the topic of 2D to 3D conversion
has proven to be more of a research question that originally
envisioned. Whilst the approach of grouping existing
software into a framework has worked with reasonable
success and allowed the developed framework to fulfil the
objective of automating much of the 2D to 3D conversion
process, it is clear that the topic of 2D to 3D conversion
requires far more research before a fully automated process
could be adopted.

REFERENCES
[1] Getchell, K., et al. The LAVA Project: A Service Based

Approach to Supporting Exploratory Learning. in IADIS
International Conference WWW/Internet 2006. 2006.
Murcia, Spain: IADIS.

[2] Quake 2. [First Person Shoot-em-up Game] [cited 2006 1
June]; Available from:
http://www.idsoftware.com/business/techdownloads/.

[3] Allison, C., et al., MMS: A User-Centric Portal for e-
Learning, in 14th International Workshop on Database and
Expert Systems Applications. 2003, IEEE: Prague, Czech
Republic.

[4] VRML: Virtual Reality Modelling Language. 2007 [cited
2007 12 January 2007]; Available from:
http://www.web3d.org/x3d/vrml/.

[5] X3D: Open Standards for Real-Time 3D Communication.
2007 [cited 2007 12 January 2007]; Available from:
http://www.web3d.org/.

[6] Sweetman, R. The Sparta Basilica Project. [Archaeological
Excavation Report] 2000-2001 [cited 2006 1 June];

Available from:
http://www.bsa.gla.ac.uk/research/index.htm?field/recent/s
partabasilica/main.

[7] Sweetman, R. and E. Katsara, The Sparta Basilica Project
2000 - preliminary report. 2002, BSA: Athens. p. 429-468.

[8] Lewis, M. and J. Jacobson, Game Engines in Scientific
Research. Communications of the ACM Special Issue,
2002. 45(1): p. 27-31.

[9] Wang, J., M. Lewis, and J. Gennari. A Game Engine Based
Simulation of the NIST Urban Search and Rescue Arenas.
in 2003 Winter Simulation Conference. 2003: ACM.

[10] Getchell, K., et al. A Computer Games Approach to
Exploratory Learning - Lava: A Case Study in System
Design. in INSTICC 3rd International Conference on Web
Information Systems and Technologies. 2007. Barcelona,
Spain: INSTICC.

[11] Jacobson, J. and L. Holden. The Virtual Egyptian Temple.
in World Conference on Educational Media, Hypermedia
and Telecommunications (ED-MEDIA). 2005. Montreal,
Canada: Associated for the Advancement of computing in
Education (AACE).

[12] Malone, T., What Makes things Fun to Learn? A Study of
Intrinsically Motivating Computer Games, in Department
of Psychology. 1980, Stanford University: Stanford,
California, USA.

[13] GtkRadiant. 2007 [cited 2007 5 May]; Available from:
http://www.qeradiant.com/top/.

[14] QuArK. 2007 [cited 2007 5 May]; Available from:
http://quark.planetquake.gamespy.com/.

[15] Quake MAP Specs. 2007 [cited 2007 5 May]; Available
from:
http://www.gamers.org/dEngine/quake/QDP/qmapspec.htm
l.

[16] Wally. 2007 [cited 2006 5 May]; Available from:
http://www.telefragged.com/wally/.

[17] Fuchs, H., Z. Kedem, and B. Naylor. Predeterming
Visibility Priority in 3-D Scenes. in 6th International
Conference of Computer Graphics and Interactive
Techniques. 1979. Chicago, Illinois, USA: ACM Press.

[18] Fuchs, H., Z. Kedem, and B. Naylor. On Visible Surface
Generation by A Priori Tree Structurews. in 7th
International Conference of Computer Graphics and
Interactive Techniques. 1980. Seattle, Washington, USA:
ACM Press.

[19] Torres, E. Optimization of the Binary Space Partition
Algorithm (BSP) for the Visualisation of Dynamic Scenes.
in Eurographics '90. 1990. Montreux, Switzerland.

